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Abstract

Let D be the unit disk in the complex planeC . We prove that for any polynomialp of degree at
mostn

max
z ∈ � D

∣∣∣∣p(z) − p(z̄)

z − z̄

∣∣∣∣ � n max
0 � j � n

∣∣∣∣∣∣
p

(
eij�/n

)
+ p

(
e−ij�/n

)
2

∣∣∣∣∣∣ ,

where� D denotes the boundary ofD. We show how this result is related to classical inequalities of
Bernstein and Markov and to more recent results due to Duffin and Schaeffer.
© 2005 Elsevier Inc. All rights reserved.

1. Introduction

LetPn be the class of polynomialsp(z) := ∑n
k=0 akz

k of degree at mostnwith complex
coefficients. We write, together withD := {z : |z| < 1},

‖p‖D := max
z∈�D

|p(z)|
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and

‖p‖[−1,1] := max−1�x �1
|p(x)|.

According to the famous inequalities of Bernstein and Markov we have

‖p′‖D �n‖p‖D, (1)

‖p′‖[−1,1]�n2‖p‖[−1,1]. (2)

We refer the reader to the survey paper of Bojanov[1], and to the recent book by Rahman
and Schmeisser [7] for up-to-date references concerning (1) and (2) and their numerous
extensions .

In this paper, we shall be concerned by the followingdiscreterefinements of (1) and (2):

‖p′‖[−1,1]�n2 max
0� j �n

|p (cos(j�/n))| (3)

and

‖p′‖D �n max
0� j �2n−1

∣∣∣p (
eij�/n

)∣∣∣ . (4)

Inequality (3) is a result due to Duffin and Schaeffer[4]; it is known that equality holds
there only for multiples of thenth Chebyshev polynomialTn ∈ Pn which is defined for
x ∈ [−1,1] by Tn(x) := cos(narccos(x)). Inequality (4) is due to Frappier et al. [5]; it is
further possible [3] to prove that equality holds in (4) only for the monomialspn(z) := Kzn,
whereK ∈ C.

Each polynomialp ∈ Pn possesses a unique expansion in terms of Chebyshev polyno-
mials as

p(z) =
n∑

k=0

Ak(p)Tk(z) (Ak(p) ∈ C, 0�k�n).

We clearly have

p(cos�) =
n∑

k=0

Ak(p) cosk� (� ∈ R)

and

p′(cos�) =
n∑

k=0

Ak(p) k
sin k�
sin �

( � ∈ R).

We can therefore, by considering the polynomialp∗(z) := ∑n
k=0 Ak(p) zk ∈ Pn, formulate

inequality (3) of Duffin and Schaeffer as∣∣∣∣∣∣
ei�p′∗

(
ei�

)
− e−i�p′∗

(
e−i�

)
ei� − e−i�

∣∣∣∣∣∣ �n2 max
0� j �n

∣∣∣∣∣p∗
(
eij�/n

) + p∗
(
e−ij�/n

)
2

∣∣∣∣∣ ,
for all � ∈ R.
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The main results of this paper are the following:

Theorem 1. Letp ∈ Pn. Then

max
�∈R

∣∣∣∣∣∣
p

(
ei�

)
− p

(
e−i�

)
ei� − e−i�

∣∣∣∣∣∣ �n max
0� j �n

∣∣∣∣∣p
(
eij�/n

) + p
(
e−ij�/n

)
2

∣∣∣∣∣ .
Theorem 2. Letp ∈ Pn and� ∈ R. Then

∣∣∣p′ (ei�
)∣∣∣ �n max

j∈Jn

∣∣∣∣∣∣
p

(
ei(�+j�/n)

)
+ p

(
ei(�−j�/n)

)
2

∣∣∣∣∣∣ ,
whereJn := {0} ∪ {j : 1�j �n, j odd}.

Theorem 1 is in the spirit of (4). It gives an upper bound for the uniform norm overR of
the divided difference

p
(
ei�

)
− p

(
e−i�

)
ei� − e−i�

of a polynomialp ∈ Pn. Our proof shows that∣∣∣∣∣∣
p

(
ei�

)
− p

(
e−i�

)
ei� − e−i�

∣∣∣∣∣∣ < n max
0� j �n

∣∣∣∣∣p
(
eij�/n

) + p
(
e−ij�/n

)
2

∣∣∣∣∣ ,
when� is not an integer multiple of� andp /≡ 0. Theorem 2 is clearly an improvement of
Bernstein’s inequality (1); moreover the cardinality ofJn is much smaller than that of the
set{0, 1, . . . , 2n − 1} and therefore Theorem 2 may yield an estimate better than (4). It is
possible to identify all polynomialsp ∈ Pn which satisfy

|p′(1)| = n max
j∈Jn

∣∣∣∣∣p
(
eij�/n

) + p
(
e−ij�/n

)
2

∣∣∣∣∣ . (5)

Details are supplied in[3]. Let us simply point out here that the set of all polynomials
satisfying (5) withn = 3 is

{p : p(z) = (2M + b)z3 + (M − b)z2 + (M − b)z − (M − b)},
whereM andb are arbitrary complex numbers.

2. Proofs of Theorems 1 and 2

Let Tn denote the vector space of all trigonometric polynomials of degree at mostn. The
following quadrature formula (we mention[2, Theorem 2.1] as a ready reference) turns out
to be useful.
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Lemma 1. The quadrature formula

1

2�

∫ �

−�
t (�) d� = 1

m

m−1∑
j=0

t

(
2j�
m

+ �
)

(� ∈ R)

holds for allt ∈ Tm−1 and� real.

We shall prove that, given� ∈ [0, �], there exist real numbers

�j = �j (�), j = 0, . . . , n,

such that

p
(
ei�

)
− p

(
e−i�

)
ei� − e−i�

=
n∑

j=0

(−1)j�j

p
(
eij�/n

) + p
(
e−ij�/n

)
2

(6)

for all p ∈ Pn, and

n∑
j=0

|�j (�)|�n. (7)

The above representation is linear and it is clearly sufficient to consider the basic polynomials
p(z) = zk, 0�k�n . Thus, we are naturally led to the system of equations

n∑
j=0

(−1)j cos

(
kj�
n

)
�j = sin k�

sin �
, k = 0, 1, . . . , n. (8)

Let us consider the vector spaceTn,e of all eventrigonometric polynomials of the form
t (�) = ∑n

k=0 ak(t) cosk�. The polynomials�j defined by

�j (�) =
∏n

�=0,��=j (cos� − cos��/n)∏n
�=0,��=j (cosj�/n − cos��/n)

, j = 0, . . . , n (9)

belong toTn,e (see[6, pp. 19–22]) and satisfy the relations

�j (��/n) = �j,�, j, � = 0, . . . , n,

where�j,� represents the usual Kronecker’s delta. The function set

{cosk� (k = 0, . . . , n), � ∈ [0,�]}
is a Chebyshev system. Therefore, we obtain the interpolation formula

t (�) =
n∑

j=0

t (j�/n) �j (�) (t ∈ Tn,e).
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Then, the quadrature formula

∫ �

0
t (�)	(�) d� =

n∑
j=0

�j t

(
j�
n

)
,

with coefficients

�j :=
∫ �

0
�j (�)	(�) d� (0�j �n)

holds for allt ∈ Tn,e and any function	, integrable over[0,�]. In particular,

n∑
j=0

cos

(
kj�
n

)
�j =

∫ �

0
cos(k�)	(�) d� (k = 0, . . . , n)

and because of (7) and (8) we would like to choose	� := 	 such that∫ �

0
cos(k�)	�(�) d� = sin(n − k)�

sin �
(k = 0, . . . , n) (10)

and

n∑
j=0

|�j | =
n∑

j=0

∣∣∣∣
∫ �

0
�j (�)	�(�) d�

∣∣∣∣ �n. (11)

The system{cosk� (k = 0, 1, . . .)} is a complete orthogonal system inL2[0,�]. So, if
	� ∈ L2[0,�], then

	�(�) =
∞∑

�=0

c�(�) cos�� (a.e.).

We shall look for	� of the form

	�(�) :=
n∑

�=0

c�(�) cos�� (a.e.).

Relations (10) uniquely determine	� as

	�(�) = 1

�

{
sin n�
sin �

+ 2
n−1∑
�=1

sin(n − �)�
sin �

cos��

}
.

Clearly, we may think of	� asa �-perturbation of the classical Fejér’s kernel.
The basic interpolation polynomials (9) are uniquely determined. Simple computations

show that

�0(�) = sin n� cos�/2

2n sin �/2
, �n(�) = (−1)n+1 sin n� sin �/2

2n cos�/2
(12)
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and

�j (�) = (−1)j sin n� sin �

2n sin

(
�
2

+ j�
2n

)
sin

(
�
2

− j�
2n

) , 1�j �n − 1. (13)

Our next task is to compute the coefficients�j (�). We claim

�0 = 1

2n

1 − cosn�
1 − cos�

, �n = (−1)n−1

2n

1 − (−1)n cosn�
1 + cos�

(14)

and for 1�j �n − 1,

�j = (−1)j − cosn�

n

(
cos

j�
n

− cos�
) . (15)

Indeed, when 1�j �n − 1

�j =
∫ �

0
�j (�)	�(�) d� = 1

2

∫ �

−�

(−1)j

n

sin � sin n�

cos
j�
n

− cos�
	�(�) d�.

and observing that in the above integral the integrand is a trigonometric polynomial of
degree 2n − 1, we apply Lemma 1 withm = 2n and� = 0 in order to obtain

�j = (−1)j

2n sin �

[
4

n−1∑
s=1

cos

(
sj�
n

)
sin s� + 2 (−1)j sin n�

]

and (15) follows upon applications of elementary identities. Similarly, (12) may be used to
obtain (14). We finally prove (11): letPn(z) := 1−zn

1−z
. By (14) and (15) withz = ei�0

n∑
j=0

∣∣�j (�0)
∣∣ = |Pn(z)|2

2n
+

n−1∑
j=1

∣∣Pn

(
zeij�/n

)∣∣ ∣∣Pn

(
ze−ij�/n

)∣∣
n

+ |Pn(−z)|2
2n

� |Pn(z)|2
2n

+
n−1∑
j=1

∣∣Pn

(
zeij�/n

)∣∣2 + ∣∣Pn

(
ze−ij�/n

)∣∣2
2n

+ |Pn(−z) |2
2n

= 1

2n

2n−1∑
j=0

∣∣Pn(	j z)
∣∣2 ,

where{	j }2n−1
j=0 is the set of distinct 2n-roots of unity. Another application of Lemma 1

with m = 2n and� = �0 yields

1

2n

2n−1∑
j=0

|Pn(	j z)|2 = 1

�

∫ �

−�

1 − cos(n�)

1 − cos(�)
d� = n

and (11) follows. This completes the proof of (6).
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Theorem 1 is an immediate consequence of (6) and (7). Theorem 2, with� = 0, follows
by letting� → 0 in (6) and (7) upon noticing that

�j (0) �= 0

only whenj ∈ Jn. The general case of Theorem 2 follows by consideringp�(z) := p(ei�z)

for givenp ∈ Pn.
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