Journal of
Approximation
Theory
ELSEVIER

A note on Bernstein and Markov type inequalities

D. Dryanov ${ }^{\text {a,* }}$, R. Fournier ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Mathematics and Statistics, Concordia University, Loyola Campus, 7141 Sherbrooke Street West, Montreal, Canada H4B 1R6
${ }^{\mathrm{b}}$ Département de Mathématiques et de Statistique, Pavillon André-Aisenstadt, Université de Montréal, Montréal, Canada H3C 3J7

Received 10 July 2003; accepted 24 May 2005
Communicated by Tamás Erdélyi
Available online 15 August 2005

Abstract

Let \mathbb{D} be the unit disk in the complex plane \mathbb{C}. We prove that for any polynomial p of degree at most n $$
\max _{z \in \partial \mathbb{D}}\left|\frac{p(z)-p(\bar{z})}{z-\bar{z}}\right| \leqslant n \max _{0 \leqslant j \leqslant n}\left|\frac{p\left(e^{i j \pi / n}\right)+p\left(e^{-i j \pi / n}\right)}{2}\right|,
$$ where $\partial \mathbb{D}$ denotes the boundary of \mathbb{D}. We show how this result is related to classical inequalities of Bernstein and Markov and to more recent results due to Duffin and Schaeffer. © 2005 Elsevier Inc. All rights reserved.

1. Introduction

Let \mathcal{P}_{n} be the class of polynomials $p(z):=\sum_{k=0}^{n} a_{k} z^{k}$ of degree at most n with complex coefficients. We write, together with $\mathbb{D}:=\{z:|z|<1\}$,

$$
\|p\|_{\mathbb{D}}:=\max _{z \in \partial \mathbb{D}}|p(z)|
$$

[^0]0021-9045/\$ - see front matter © 2005 Elsevier Inc. All rights reserved.
doi:10.1016/j.jat.2005.05.008
and

$$
\|p\|_{[-1,1]}:=\max _{-1 \leqslant x \leqslant 1}|p(x)| .
$$

According to the famous inequalities of Bernstein and Markov we have

$$
\begin{align*}
& \left\|p^{\prime}\right\|_{\mathbb{D}} \leqslant n\|p\|_{\mathbb{D}} \tag{1}\\
& \left\|p^{\prime}\right\|_{[-1,1]} \leqslant n^{2}\|p\|_{[-1,1]} \tag{2}
\end{align*}
$$

We refer the reader to the survey paper of Bojanov [1], and to the recent book by Rahman and Schmeisser [7] for up-to-date references concerning (1) and (2) and their numerous extensions.

In this paper, we shall be concerned by the following discrete refinements of (1) and (2):

$$
\begin{equation*}
\left\|p^{\prime}\right\|_{[-1,1]} \leqslant n^{2} \max _{0 \leqslant j \leqslant n}|p(\cos (j \pi / n))| \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|p^{\prime}\right\|_{\mathbb{D}} \leqslant n \max _{0 \leqslant j \leqslant 2 n-1}\left|p\left(e^{i j \pi / n}\right)\right| . \tag{4}
\end{equation*}
$$

Inequality (3) is a result due to Duffin and Schaeffer [4]; it is known that equality holds there only for multiples of the nth Chebyshev polynomial $T_{n} \in \mathcal{P}_{n}$ which is defined for $x \in[-1,1]$ by $T_{n}(x):=\cos (n \arccos (x))$. Inequality (4) is due to Frappier et al. [5]; it is further possible [3] to prove that equality holds in (4) only for the monomials $p_{n}(z):=K z^{n}$, where $K \in \mathbb{C}$.

Each polynomial $p \in \mathcal{P}_{n}$ possesses a unique expansion in terms of Chebyshev polynomials as

$$
p(z)=\sum_{k=0}^{n} A_{k}(p) T_{k}(z) \quad\left(A_{k}(p) \in \mathbb{C}, 0 \leqslant k \leqslant n\right)
$$

We clearly have

$$
p(\cos \theta)=\sum_{k=0}^{n} A_{k}(p) \cos k \theta \quad(\theta \in \mathbb{R})
$$

and

$$
p^{\prime}(\cos \theta)=\sum_{k=0}^{n} A_{k}(p) k \frac{\sin k \theta}{\sin \theta} \quad(\theta \in \mathbb{R})
$$

We can therefore, by considering the polynomial $p_{*}(z):=\sum_{k=0}^{n} A_{k}(p) z^{k} \in \mathcal{P}_{n}$, formulate inequality (3) of Duffin and Schaeffer as

$$
\left|\frac{e^{i \theta} p_{*}^{\prime}\left(e^{i \theta}\right)-e^{-i \theta} p_{*}^{\prime}\left(e^{-i \theta}\right)}{e^{i \theta}-e^{-i \theta}}\right| \leqslant n^{2} \max _{0 \leqslant j \leqslant n}\left|\frac{p_{*}\left(e^{i j \pi / n}\right)+p_{*}\left(e^{-i j \pi / n}\right)}{2}\right|,
$$

for all $\theta \in \mathbb{R}$.

The main results of this paper are the following:
Theorem 1. Let $p \in \mathcal{P}_{n}$. Then

$$
\max _{\theta \in \mathbb{R}}\left|\frac{p\left(e^{i \theta}\right)-p\left(e^{-i \theta}\right)}{e^{i \theta}-e^{-i \theta}}\right| \leqslant n \max _{0 \leqslant j \leqslant n}\left|\frac{p\left(e^{i j \pi / n}\right)+p\left(e^{-i j \pi / n}\right)}{2}\right| .
$$

Theorem 2. Let $p \in \mathcal{P}_{n}$ and $\theta \in \mathbb{R}$. Then

$$
\left|p^{\prime}\left(e^{i \theta}\right)\right| \leqslant n \max _{j \in J_{n}}\left|\frac{p\left(e^{i(\theta+j \pi / n)}\right)+p\left(e^{i(\theta-j \pi / n)}\right)}{2}\right|
$$

where $J_{n}:=\{0\} \cup\{j: 1 \leqslant j \leqslant n, j$ odd $\}$.
Theorem 1 is in the spirit of (4). It gives an upper bound for the uniform norm over \mathbb{R} of the divided difference

$$
\frac{p\left(e^{i \theta}\right)-p\left(e^{-i \theta}\right)}{e^{i \theta}-e^{-i \theta}}
$$

of a polynomial $p \in \mathcal{P}_{n}$. Our proof shows that

$$
\left|\frac{p\left(e^{i \theta}\right)-p\left(e^{-i \theta}\right)}{e^{i \theta}-e^{-i \theta}}\right|<n \max _{0 \leqslant j \leqslant n}\left|\frac{p\left(e^{i j \pi / n}\right)+p\left(e^{-i j \pi / n}\right)}{2}\right|,
$$

when θ is not an integer multiple of π and $p \not \equiv 0$. Theorem 2 is clearly an improvement of Bernstein's inequality (1); moreover the cardinality of J_{n} is much smaller than that of the set $\{0,1, \ldots, 2 n-1\}$ and therefore Theorem 2 may yield an estimate better than (4). It is possible to identify all polynomials $p \in \mathcal{P}_{n}$ which satisfy

$$
\begin{equation*}
\left|p^{\prime}(1)\right|=n \max _{j \in J_{n}}\left|\frac{p\left(e^{i j \pi / n}\right)+p\left(e^{-i j \pi / n}\right)}{2}\right| . \tag{5}
\end{equation*}
$$

Details are supplied in [3]. Let us simply point out here that the set of all polynomials satisfying (5) with $n=3$ is

$$
\left\{p: p(z)=(2 M+b) z^{3}+(M-b) z^{2}+(M-b) z-(M-b)\right\}
$$

where M and b are arbitrary complex numbers.

2. Proofs of Theorems 1 and 2

Let \mathcal{T}_{n} denote the vector space of all trigonometric polynomials of degree at most n. The following quadrature formula (we mention [2, Theorem 2.1] as a ready reference) turns out to be useful.

Lemma 1. The quadrature formula

$$
\frac{1}{2 \pi} \int_{-\pi}^{\pi} t(\theta) d \theta=\frac{1}{m} \sum_{j=0}^{m-1} t\left(\frac{2 j \pi}{m}+\gamma\right) \quad(\gamma \in \mathbb{R})
$$

holds for all $t \in \mathcal{T}_{m-1}$ and γ real.
We shall prove that, given $\theta \in[0, \pi]$, there exist real numbers

$$
\alpha_{j}=\alpha_{j}(\theta), \quad j=0, \ldots, n
$$

such that

$$
\begin{equation*}
\frac{p\left(e^{i \theta}\right)-p\left(e^{-i \theta}\right)}{e^{i \theta}-e^{-i \theta}}=\sum_{j=0}^{n}(-1)^{j} \alpha_{j} \frac{p\left(e^{i j \pi / n}\right)+p\left(e^{-i j \pi / n}\right)}{2} \tag{6}
\end{equation*}
$$

for all $p \in \mathcal{P}_{n}$, and

$$
\begin{equation*}
\sum_{j=0}^{n}\left|\alpha_{j}(\theta)\right| \leqslant n \tag{7}
\end{equation*}
$$

The above representation is linear and it is clearly sufficient to consider the basic polynomials $p(z)=z^{k}, 0 \leqslant k \leqslant n$. Thus, we are naturally led to the system of equations

$$
\begin{equation*}
\sum_{j=0}^{n}(-1)^{j} \cos \left(\frac{k j \pi}{n}\right) \alpha_{j}=\frac{\sin k \theta}{\sin \theta}, \quad k=0,1, \ldots, n \tag{8}
\end{equation*}
$$

Let us consider the vector space $\mathcal{T}_{n, e}$ of all even trigonometric polynomials of the form $t(\varphi)=\sum_{k=0}^{n} a_{k}(t) \cos k \varphi$. The polynomials τ_{j} defined by

$$
\begin{equation*}
\tau_{j}(\varphi)=\frac{\prod_{v=0, v \neq j}^{n}(\cos \varphi-\cos v \pi / n)}{\prod_{v=0, v \neq j}^{n}(\cos j \pi / n-\cos v \pi / n)}, \quad j=0, \ldots, n \tag{9}
\end{equation*}
$$

belong to $\mathcal{T}_{n, e}$ (see [6, pp. 19-22]) and satisfy the relations

$$
\tau_{j}(v \pi / n)=\delta_{j, v}, \quad j, v=0, \ldots, n
$$

where $\delta_{j, v}$ represents the usual Kronecker's delta. The function set

$$
\{\cos k \varphi(k=0, \ldots, n), \quad \varphi \in[0, \pi]\}
$$

is a Chebyshev system. Therefore, we obtain the interpolation formula

$$
t(\varphi)=\sum_{j=0}^{n} t(j \pi / n) \tau_{j}(\varphi) \quad\left(t \in \mathcal{T}_{n, e}\right)
$$

Then, the quadrature formula

$$
\int_{0}^{\pi} t(\varphi) \mu(\varphi) d \varphi=\sum_{j=0}^{n} \alpha_{j} t\left(\frac{j \pi}{n}\right)
$$

with coefficients

$$
\alpha_{j}:=\int_{0}^{\pi} \tau_{j}(\varphi) \mu(\varphi) d \varphi \quad(0 \leqslant j \leqslant n)
$$

holds for all $t \in \mathcal{T}_{n, e}$ and any function μ, integrable over $[0, \pi]$. In particular,

$$
\sum_{j=0}^{n} \cos \left(\frac{k j \pi}{n}\right) \alpha_{j}=\int_{0}^{\pi} \cos (k \varphi) \mu(\varphi) d \varphi \quad(k=0, \ldots, n)
$$

and because of (7) and (8) we would like to choose $\mu_{\theta}:=\mu$ such that

$$
\begin{equation*}
\int_{0}^{\pi} \cos (k \varphi) \mu_{\theta}(\varphi) d \varphi=\frac{\sin (n-k) \theta}{\sin \theta} \quad(k=0, \ldots, n) \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{j=0}^{n}\left|\alpha_{j}\right|=\sum_{j=0}^{n}\left|\int_{0}^{\pi} \tau_{j}(\varphi) \mu_{\theta}(\varphi) d \varphi\right| \leqslant n \tag{11}
\end{equation*}
$$

The system $\{\cos k \varphi(k=0,1, \ldots)\}$ is a complete orthogonal system in $L^{2}[0, \pi]$. So, if $\mu_{\theta} \in L^{2}[0, \pi]$, then

$$
\mu_{\theta}(\varphi)=\sum_{v=0}^{\infty} c_{v}(\theta) \cos v \varphi \quad \text { (a.e.). }
$$

We shall look for μ_{θ} of the form

$$
\mu_{\theta}(\varphi):=\sum_{v=0}^{n} c_{v}(\theta) \cos v \varphi \quad \text { (a.e.). }
$$

Relations (10) uniquely determine μ_{θ} as

$$
\mu_{\theta}(\varphi)=\frac{1}{\pi}\left\{\frac{\sin n \theta}{\sin \theta}+2 \sum_{v=1}^{n-1} \frac{\sin (n-v) \theta}{\sin \theta} \cos v \varphi\right\} .
$$

Clearly, we may think of μ_{θ} as a θ-perturbation of the classical Fejér's kernel.
The basic interpolation polynomials (9) are uniquely determined. Simple computations show that

$$
\begin{equation*}
\tau_{0}(\varphi)=\frac{\sin n \varphi \cos \varphi / 2}{2 n \sin \varphi / 2}, \quad \tau_{n}(\varphi)=\frac{(-1)^{n+1} \sin n \varphi \sin \varphi / 2}{2 n \cos \varphi / 2} \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
\tau_{j}(\varphi)=\frac{(-1)^{j} \sin n \varphi \sin \varphi}{2 n \sin \left(\frac{\varphi}{2}+\frac{j \pi}{2 n}\right) \sin \left(\frac{\varphi}{2}-\frac{j \pi}{2 n}\right)}, \quad 1 \leqslant j \leqslant n-1 \tag{13}
\end{equation*}
$$

Our next task is to compute the coefficients $\alpha_{j}(\theta)$. We claim

$$
\begin{equation*}
\alpha_{0}=\frac{1}{2 n} \frac{1-\cos n \theta}{1-\cos \theta}, \quad \alpha_{n}=\frac{(-1)^{n-1}}{2 n} \frac{1-(-1)^{n} \cos n \theta}{1+\cos \theta} \tag{14}
\end{equation*}
$$

and for $1 \leqslant j \leqslant n-1$,

$$
\begin{equation*}
\alpha_{j}=\frac{(-1)^{j}-\cos n \theta}{n\left(\cos \frac{j \pi}{n}-\cos \theta\right)} \tag{15}
\end{equation*}
$$

Indeed, when $1 \leqslant j \leqslant n-1$

$$
\alpha_{j}=\int_{0}^{\pi} \tau_{j}(\varphi) \mu_{\theta}(\varphi) d \varphi=\frac{1}{2} \int_{-\pi}^{\pi} \frac{(-1)^{j}}{n} \frac{\sin \varphi \sin n \varphi}{\cos \frac{j \pi}{n}-\cos \varphi} \mu_{\theta}(\varphi) d \varphi .
$$

and observing that in the above integral the integrand is a trigonometric polynomial of degree $2 n-1$, we apply Lemma 1 with $m=2 n$ and $\gamma=0$ in order to obtain

$$
\alpha_{j}=\frac{(-1)^{j}}{2 n \sin \theta}\left[4 \sum_{s=1}^{n-1} \cos \left(\frac{s j \pi}{n}\right) \sin s \theta+2(-1)^{j} \sin n \theta\right]
$$

and (15) follows upon applications of elementary identities. Similarly, (12) may be used to obtain (14). We finally prove (11): let $P_{n}(z):=\frac{1-z^{n}}{1-z}$. By (14) and (15) with $z=e^{i \gamma_{0}}$

$$
\begin{aligned}
\sum_{j=0}^{n}\left|\alpha_{j}\left(\gamma_{0}\right)\right| & =\frac{\left|P_{n}(z)\right|^{2}}{2 n}+\sum_{j=1}^{n-1} \frac{\left|P_{n}\left(z e^{i j \pi / n}\right)\right|\left|P_{n}\left(z e^{-i j \pi / n}\right)\right|}{n}+\frac{\left|P_{n}(-z)\right|^{2}}{2 n} \\
& \leqslant \frac{\left|P_{n}(z)\right|^{2}}{2 n}+\sum_{j=1}^{n-1} \frac{\left|P_{n}\left(z e^{i j \pi / n}\right)\right|^{2}+\left|P_{n}\left(z e^{-i j \pi / n}\right)\right|^{2}}{2 n}+\frac{\left|P_{n}(-z)\right|^{2}}{2 n} \\
& =\frac{1}{2 n} \sum_{j=0}^{2 n-1}\left|P_{n}\left(\mu_{j} z\right)\right|^{2}
\end{aligned}
$$

where $\left\{\mu_{j}\right\}_{j=0}^{2 n-1}$ is the set of distinct $2 n$-roots of unity. Another application of Lemma 1 with $m=2 n$ and $\gamma=\gamma_{0}$ yields

$$
\frac{1}{2 n} \sum_{j=0}^{2 n-1}\left|P_{n}\left(\mu_{j} z\right)\right|^{2}=\frac{1}{\pi} \int_{-\pi}^{\pi} \frac{1-\cos (n \theta)}{1-\cos (\theta)} d \theta=n
$$

and (11) follows. This completes the proof of (6).

Theorem 1 is an immediate consequence of (6) and (7). Theorem 2 , with $\theta=0$, follows by letting $\theta \rightarrow 0$ in (6) and (7) upon noticing that

$$
\alpha_{j}(0) \neq 0
$$

only when $j \in J_{n}$. The general case of Theorem 2 follows by considering $p_{\theta}(z):=p\left(e^{i \theta} z\right)$ for given $p \in \mathcal{P}_{n}$.

References

[1] B.D. Bojanov, Markov-type inequalities for polynomials and splines, in: Ch. Chui, L. Schumaker, J. Stöckler (Eds.), Approximation Theory, vol. X (St. Louis, MO, 2001), Innovations in Applied Mathematics, Vanderbilt University Press, Nashville, TN, 2002, 31-90.
[2] D.P. Dryanov, Quadrature formulae with free nodes for periodic functions, Numer. Math. 67 (1994) 441-464.
[3] D.P. Dryanov, R. Fournier, Bernstein and Markov type inequalities, Preprint CRM-2929, Centre de Recherches Mathématiques, Université de Montréal, 2003.
[4] R.J. Duffin, A.C. Schaeffer, A refinement of an inequality of the brothers Markoff, Trans. Amer. Math. Soc. 50 (1941) 517-528.
[5] C. Frappier, Q.I. Rahman, St. Ruscheweyh, New inequalities for polynomials, Trans. Amer. Math. Soc. 288 (1985) 69-99.
[6] I.P. Natanson, Constructive function theory, vol. 3, Frederic Ungar, New York, 1965.
[7] Q.I. Rahman, G. Schmeisser, Analytic Theory of Polynomials, Oxford University Press, Oxford, 2002.

[^0]: * Corresponding author. Department of Mathematics and Statistics, University of Montreal, CP 6128 Centreville, Monteral, Canada QC H3C 3J7.

 E-mail addresses: dryanovd@mathstat.concordia.ca (D. Dryanov), fournier@dms.umontreal.ca (R. Fournier).

