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Abstract
Let D be the unit disk in the complex plarie. We prove that for any polynomigl of degree at
mostn

p@) — p@)
7 -7z

P (eijn/n> +p (e—ijn/n>
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0<j<n 2

max
Z€EID

whered D denotes the boundary @f. We show how this result is related to classical inequalities of
Bernstein and Markov and to more recent results due to Duffin and Schaeffer.
© 2005 Elsevier Inc. All rights reserved.

1. Introduction

Let P, be the class of polynomials(z) := > _, axz* of degree at mostwith complex
coefficients. We write, together with := {z : |z| < 1},

lpllp := max|p(z)|
ze0D
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and

- = max .
IPlLy=_max 1p@)

—iXx

According to the famous inequalities of Bernstein and Markov we have
Ip'llp <nliplip, )

1P li—1.1<n2 ) plli-1.1. (2)

We refer the reader to the survey paper of Bojafidvand to the recent book by Rahman
and Schmeisser [7] for up-to-date references concerning (1) and (2) and their numerous
extensions.

In this paper, we shall be concerned by the followitigcreterefinements of (1) and (2):

I lj-1.1<n® max |p (cos(jn/n))| 3)
0<j<n

and

4

/ Lym/n
1Pl <n _max_|p(e77m)].
Inequality (3) is a result due to Duffin and Schaefi# it is known that equality holds
there only for multiples of theth Chebyshev polynomidl, € P, which is defined for
x € [-1,1] by T,,(x) := cos(narccos(x)). Inequality (4) is due to Frappier et al. [5]; it is
further possible [3] to prove that equality holds in (4) only for the monomia(s) := K 7",
whereK e C.
Each polynomiap € P, possesses a unique expansion in terms of Chebyshev polyno-
mials as

P =Y Ap)Ti(z) (A(p) € C, 0<k<n).
k=0
We clearly have

n

p(cost) = > Ax(p) coskl (0 € R)
k=0

and

kHO (0 € R).

sin
in

P/(cos0) =) Ax(p)k—

k=0

We can therefore, by considering the polynomialz) := Y i_, Ax(p) z* € Py, formulate
inequality (3) of Duffin and Schaeffer as

ei()p:k (ei()) _ e—i()p; (e—i())

il _ o—i0

Da (eijn/n) + ps (e—ijn/n)
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<n2 max
0<j<n

for all 6 € R.
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The main results of this paper are the following:

Theorem 1. Letp € P,. Then

()=l
max , <n max

p (eijTE/n) + P (e—ijn/n)
feR el — =il 0<j<n '

2

Theorem 2. Letp € P, andf € R. Then

o P (ei(0+jn/n)> tp (ei(f)fjn/n))
é )‘ <nmax ,
P ( A 2

whereJ, := {0} U{j : 1< j<n, jodd}.

Theorem 1 is in the spirit of (4). It gives an upper bound for the uniform norm B
the divided difference

P(e) = ()

il _ o—i0

of a polynomialp € P,. Our proof shows that

P (gi()> _p (e—i()>
<n max

eio_e—io 0<j<n

» (eijn/n) +p (efijn/n)
2

’

whend is not an integer multiple of andp # 0. Theorem 2 is clearly an improvement of
Bernstein’s inequality (1); moreover the cardinalityffis much smaller than that of the
set{0, 1, ..., 2z — 1} and therefore Theorem 2 may yield an estimate better than (4). It is
possible to identify all polynomialg € P, which satisfy

p (eijn/n) +p (efijn/n)
5 .

[p'(1)| = n max
JE€JIn

®)

Details are supplied ifi3]. Let us simply point out here that the set of all polynomials
satisfying (5) withn = 3 is

{p:p@) =CM+b)+ (M —b)z° + (M — b)z — (M — b))},

whereM andb are arbitrary complex numbers.
2. Proofs of Theorems 1 and 2
Let 7, denote the vector space of all trigonometric polynomials of degree atrmoke

following quadrature formula (we menti¢®, Theorem 2.1] as a ready reference) turns out
to be useful.
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Lemma 1. The quadrature formula
1 (7 1% (2jn
= t@do==">" r(Lﬂ) (y € R)
2n J_, m “ m
j=0
holds for allt € 7,,—1 andy real.

We shall prove that, givef € [0, =], there exist real numbers

OCjZOCj(H), j=0,...,n,

such that
i0 —i0 - -
p (6 ) — P <€ ) n .p (etjn/n) +p (e_’-’n/”)
i =i =Y (-Do; ©)
el — =it = 5
forall p € P,, and
3l O] <n. -
j=0

The above representationislinear anditis clearly sufficientto consider the basic polynomials
p(z) =75, 0<k<n.Thus, we are naturally led to the system of equations

n . kj sin k0
E (=1 cos(J—n)ocjz_—, k=0,1,...,n. (8)
, n sin 0
Jj=0
Let us consider the vector spagg, of all eventrigonometric polynomials of the form
1(¢) = Y y_o ak(t) coske. The polynomials; defined by

H::O,v;ﬁj (cos¢p — cosvr/n)

, J=0,..., 9
[T'=0.,», (cOs jm/n — cosvn/n) / " ©)

Tj(p) =

belong to7, . (se€[6, pp. 19-22]) and satisfy the relations
Tj(vn/n) =96y, jv=0,...,n,

whered; , represents the usual Kronecker’s delta. The function set
{coskp (k=0,...,n), ¢ ][0, 7]}

is a Chebyshev system. Therefore, we obtain the interpolation formula

n

He) =Y 1(n/n) tj(@) (€ Tre)

j=0
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Then, the quadrature formula

/O 1) u(@)dp =) o)1 <Jn—n> :
j=0

with coefficients
T
wi= [ e ©<j<n
holds for allz € 7, . and any functior, integrable ovefO, x]. In particular,
n k . T
> cos(j—n) o =/ cos(kp) u(@)dep (k=0,...,n)
n 0

j=0

and because of (7) and (8) we would like to chopge= u such that

T _sin(n — k)0 B
/O COS(k) (@) dp = TS k=0, m) (10)
and
>l = | [ @) o) do| <n. (11)
j=0 j=0 10

The systerm{coske (k = 0,1, ...)} is a complete orthogonal systemir[o0, z]. So, if
1y € L?[0, n], then

e¢]

Ho(@) =) cv(O)cosve  (ae).
v=0

We shall look fory, of the form

n

(@) = _ cy(0)cosvep (ae).
v=0

Relations (10) uniquely determing as

. n—-1 .
1 | sinnO sin(n — v)0
Lo(p) = “Vsno ; g Cosve(-

Clearly, we may think of, asa 0-perturbation of the classical Fejér’s kernel.
The basic interpolation polynomials (9) are uniquely determined. Simple computations
show that

sinngcosg/2

(=1t sinngsin /2
() = osn e/

, = 12
2nsin ¢/2 2ncos¢/2 (12)
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and

(—1)/ sinneg sin @

TJ(QD)= - ’
(@ ¢® T
2n sin — ]sin| = — =—

" (2+2 ) (2 2n>

Our next task is to compute the coefficieng0). We claim

1<j<n —1. (13)

1 1—cosnf . (=1 11— (=1)cosnb
2n 1—cos®’ " 2 1+ cos0
and for 1< j <n — 1,

og =

(14)

% = (=1) —cosn0 ' (15)

j T
n (cosJ— — cos (9)
n

Indeed, when £ j<n -1

m 1 (" (=1) singsinnge
% =/ (@) ko) do = 5 o Ho(@) d .
0 - " 05! _ cos
@
n

and observing that in the above integral the integrand is a trigonometric polynomial of
degree 2 — 1, we apply Lemma 1 witlw = 2rn andy = 0 in order to obtain

-1 [ S
= j
uj = onsind [42 05( )sm s0+2(=1) sin ne}

and (15) follows upon applications of elementary identities. Similarly, (12) may be used to
obtain (14). We finally prove (11): le®,(z) := = ¢!l
n— 1|P Zetjn/n HP (Ze l]n/n)| [P, ( Z)|2

P 2 n\—
Z|O‘J (0| = | (Z)| Z n + 2n

. |Pn(Z)|2 +"z:1 |Pn (Zeijn/n)|2 T |Pn (Ze—ijn/n)|2 . 1P (—2) |2

2n a 2n 2n

] 2l
=5 > P2’
j=0

where{uj is the set of distinct 2-roots of unity. Another application of Lemma 1
withm = 2n andy = 7o yields

1 0
—Z|P(u,z)| - /%{i’(’e))dezn

and (11) follows. This completes the proof of (6).

2n1
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Theorem 1 is an immediate consequence of (6) and (7). Theorem 2 with, follows
by lettingf — 0 in (6) and (7) upon noticing that

a;(0) #0

only whenj € J,. The general case of Theorem 2 follows by considefing) := p(e'?z)
for givenp € P,.
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