

Available online at www.sciencedirect.com

JOURNAL OF Approximation Theory

Journal of Approximation Theory 136 (2005) 84-90

www.elsevier.com/locate/jat

A note on Bernstein and Markov type inequalities

D. Dryanov^{a,*}, R. Fournier^b

^aDepartment of Mathematics and Statistics, Concordia University, Loyola Campus, 7141 Sherbrooke Street West, Montreal, Canada H4B 1R6 ^bDépartement de Mathématiques et de Statistique, Pavillon André-Aisenstadt, Université de Montréal,

Montréal, Canada H3C 3J7

Received 10 July 2003; accepted 24 May 2005

Communicated by Tamás Erdélyi Available online 15 August 2005

Abstract

Let $\mathbb D$ be the unit disk in the complex plane $\mathbb C$. We prove that for any polynomial p of degree at most n

$$\max_{z \in \partial \mathbb{D}} \left| \frac{p(z) - p(\bar{z})}{z - \bar{z}} \right| \leq n \max_{0 \leq j \leq n} \left| \frac{p\left(e^{ij\pi/n}\right) + p\left(e^{-ij\pi/n}\right)}{2} \right|$$

where $\partial \mathbb{D}$ denotes the boundary of \mathbb{D} . We show how this result is related to classical inequalities of Bernstein and Markov and to more recent results due to Duffin and Schaeffer. \otimes 2005 Elsevier Inc. All rights reserved.

1. Introduction

Let \mathcal{P}_n be the class of polynomials $p(z) := \sum_{k=0}^n a_k z^k$ of degree at most *n* with complex coefficients. We write, together with $\mathbb{D} := \{z : |z| < 1\}$,

$$\|p\|_{\mathbb{D}} := \max_{z \in \partial \mathbb{D}} |p(z)|$$

 $0021\mathchar`-9045$

^{*} Corresponding author. Department of Mathematics and Statistics, University of Montreal, CP 6128 Centreville, Monteral, Canada QC H3C 3J7.

E-mail addresses: dryanovd@mathstat.concordia.ca (D. Dryanov), fournier@dms.umontreal.ca (R. Fournier).

and

$$||p||_{[-1,1]} := \max_{-1 \leq x \leq 1} |p(x)|.$$

According to the famous inequalities of Bernstein and Markov we have

$$\|p'\|_{\mathbb{D}} \leqslant n \|p\|_{\mathbb{D}},\tag{1}$$

$$\|p'\|_{[-1,1]} \leqslant n^2 \|p\|_{[-1,1]}.$$
(2)

We refer the reader to the survey paper of Bojanov [1], and to the recent book by Rahman and Schmeisser [7] for up-to-date references concerning (1) and (2) and their numerous extensions.

In this paper, we shall be concerned by the following *discrete* refinements of (1) and (2):

$$\|p'\|_{[-1,1]} \leq n^2 \max_{0 \leq j \leq n} |p(\cos(j\pi/n))|$$
(3)

and

$$\|p'\|_{\mathbb{D}} \leq n \max_{0 \leq j \leq 2n-1} \left| p\left(e^{ij\pi/n}\right) \right|.$$
(4)

Inequality (3) is a result due to Duffin and Schaeffer [4]; it is known that equality holds there only for multiples of the *n*th Chebyshev polynomial $T_n \in \mathcal{P}_n$ which is defined for $x \in [-1, 1]$ by $T_n(x) := \cos(n \arccos(x))$. Inequality (4) is due to Frappier et al. [5]; it is further possible [3] to prove that equality holds in (4) only for the monomials $p_n(z) := Kz^n$, where $K \in \mathbb{C}$.

Each polynomial $p \in \mathcal{P}_n$ possesses a unique expansion in terms of Chebyshev polynomials as

$$p(z) = \sum_{k=0}^{n} A_k(p) T_k(z) \quad (A_k(p) \in \mathbb{C}, \ 0 \leq k \leq n).$$

We clearly have

$$p(\cos \theta) = \sum_{k=0}^{n} A_k(p) \cos k\theta \quad (\theta \in \mathbb{R})$$

and

$$p'(\cos \theta) = \sum_{k=0}^{n} A_k(p) k \frac{\sin k\theta}{\sin \theta} \quad (\theta \in \mathbb{R}).$$

We can therefore, by considering the polynomial $p_*(z) := \sum_{k=0}^n A_k(p) z^k \in \mathcal{P}_n$, formulate inequality (3) of Duffin and Schaeffer as

$$\left|\frac{e^{i\theta}p'_{*}\left(e^{i\theta}\right)-e^{-i\theta}p'_{*}\left(e^{-i\theta}\right)}{e^{i\theta}-e^{-i\theta}}\right|\leqslant n^{2}\max_{0\leqslant j\leqslant n}\left|\frac{p_{*}\left(e^{ij\pi/n}\right)+p_{*}\left(e^{-ij\pi/n}\right)}{2}\right|,$$

for all $\theta \in \mathbb{R}$.

The main results of this paper are the following:

Theorem 1. Let $p \in \mathcal{P}_n$. Then

$$\max_{\theta \in \mathbb{R}} \left| \frac{p\left(e^{i\theta}\right) - p\left(e^{-i\theta}\right)}{e^{i\theta} - e^{-i\theta}} \right| \leq n \max_{0 \leq j \leq n} \left| \frac{p\left(e^{ij\pi/n}\right) + p\left(e^{-ij\pi/n}\right)}{2} \right|$$

Theorem 2. Let $p \in \mathcal{P}_n$ and $\theta \in \mathbb{R}$. Then

$$\left|p'\left(e^{i\theta}\right)\right| \leq n \max_{j \in J_n} \left|\frac{p\left(e^{i(\theta+j\pi/n)}\right)+p\left(e^{i(\theta-j\pi/n)}\right)}{2}\right|,$$

where $J_n := \{0\} \cup \{j : 1 \leq j \leq n, j \text{ odd}\}.$

Theorem 1 is in the spirit of (4). It gives an upper bound for the uniform norm over \mathbb{R} of the divided difference

$$\frac{p\left(e^{i\theta}\right) - p\left(e^{-i\theta}\right)}{e^{i\theta} - e^{-i\theta}}$$

of a polynomial $p \in \mathcal{P}_n$. Our proof shows that

$$\left|\frac{p\left(e^{i\theta}\right)-p\left(e^{-i\theta}\right)}{e^{i\theta}-e^{-i\theta}}\right| < n \max_{0 \leqslant j \leqslant n} \left|\frac{p\left(e^{ij\pi/n}\right)+p\left(e^{-ij\pi/n}\right)}{2}\right|,$$

when θ is not an integer multiple of π and $p \neq 0$. Theorem 2 is clearly an improvement of Bernstein's inequality (1); moreover the cardinality of J_n is much smaller than that of the set $\{0, 1, \ldots, 2n - 1\}$ and therefore Theorem 2 may yield an estimate better than (4). It is possible to identify all polynomials $p \in \mathcal{P}_n$ which satisfy

$$|p'(1)| = n \max_{j \in J_n} \left| \frac{p\left(e^{ij\pi/n}\right) + p\left(e^{-ij\pi/n}\right)}{2} \right|.$$
(5)

Details are supplied in [3]. Let us simply point out here that the set of all polynomials satisfying (5) with n = 3 is

$$\{p: p(z) = (2M+b)z^3 + (M-b)z^2 + (M-b)z - (M-b)\},\$$

where *M* and *b* are arbitrary complex numbers.

2. Proofs of Theorems 1 and 2

Let \mathcal{T}_n denote the vector space of all trigonometric polynomials of degree at most *n*. The following quadrature formula (we mention [2, Theorem 2.1] as a ready reference) turns out to be useful.

86

Lemma 1. The quadrature formula

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} t(\theta) \, d\theta = \frac{1}{m} \sum_{j=0}^{m-1} t\left(\frac{2j\pi}{m} + \gamma\right) \quad (\gamma \in \mathbb{R})$$

holds for all $t \in \mathcal{T}_{m-1}$ and γ real.

We shall prove that, given $\theta \in [0, \pi]$, there exist real numbers

$$\alpha_j = \alpha_j(\theta), \quad j = 0, \dots, n,$$

such that

$$\frac{p\left(e^{i\theta}\right) - p\left(e^{-i\theta}\right)}{e^{i\theta} - e^{-i\theta}} = \sum_{j=0}^{n} (-1)^{j} \alpha_{j} \frac{p\left(e^{ij\pi/n}\right) + p\left(e^{-ij\pi/n}\right)}{2}$$
(6)

for all $p \in \mathcal{P}_n$, and

$$\sum_{j=0}^{n} |\alpha_j(\theta)| \leqslant n.$$
(7)

The above representation is linear and it is clearly sufficient to consider the basic polynomials $p(z) = z^k$, $0 \le k \le n$. Thus, we are naturally led to the system of equations

$$\sum_{j=0}^{n} (-1)^{j} \cos\left(\frac{kj\pi}{n}\right) \alpha_{j} = \frac{\sin k\theta}{\sin \theta}, \quad k = 0, 1, \dots, n.$$
(8)

Let us consider the vector space $\mathcal{T}_{n,e}$ of all *even* trigonometric polynomials of the form $t(\varphi) = \sum_{k=0}^{n} a_k(t) \cos k\varphi$. The polynomials τ_j defined by

$$\tau_j(\varphi) = \frac{\prod_{\nu=0, \nu \neq j}^n (\cos \varphi - \cos \nu \pi/n)}{\prod_{\nu=0, \nu \neq j}^n (\cos j \pi/n - \cos \nu \pi/n)}, \quad j = 0, \dots, n$$
(9)

belong to $\mathcal{T}_{n,e}$ (see [6, pp. 19–22]) and satisfy the relations

 $\tau_j (v\pi/n) = \delta_{j,v}, \quad j, v = 0, \dots, n,$

where $\delta_{i,v}$ represents the usual Kronecker's delta. The function set

$$\{\cos k\varphi \ (k=0,\ldots,n), \quad \varphi \in [0,\pi]\}$$

is a Chebyshev system. Therefore, we obtain the interpolation formula

$$t(\varphi) = \sum_{j=0}^{n} t(j\pi/n) \tau_j(\varphi) \quad (t \in \mathcal{T}_{n,e}).$$

Then, the quadrature formula

$$\int_0^{\pi} t(\varphi) \,\mu(\varphi) \,d\varphi = \sum_{j=0}^n \alpha_j \,t\left(\frac{j\pi}{n}\right),$$

with coefficients

$$\alpha_j := \int_0^\pi \tau_j(\varphi) \, \mu(\varphi) \, d\varphi \quad (0 \leqslant j \leqslant n)$$

holds for all $t \in T_{n,e}$ and any function μ , integrable over $[0, \pi]$. In particular,

$$\sum_{j=0}^{n} \cos\left(\frac{kj\pi}{n}\right) \alpha_{j} = \int_{0}^{\pi} \cos(k\varphi) \,\mu(\varphi) \,d\varphi \quad (k = 0, \dots, n)$$

and because of (7) and (8) we would like to choose $\mu_{\theta} := \mu$ such that

$$\int_0^\pi \cos(k\varphi)\,\mu_\theta(\varphi)\,d\varphi = \frac{\sin(n-k)\theta}{\sin\,\theta} \quad (k=0,\ldots,n) \tag{10}$$

and

$$\sum_{j=0}^{n} |\alpha_j| = \sum_{j=0}^{n} \left| \int_0^{\pi} \tau_j(\varphi) \, \mu_\theta(\varphi) \, d\varphi \right| \leqslant n.$$
(11)

The system {cos $k\varphi$ (k = 0, 1, ...)} is a complete orthogonal system in $L^2[0, \pi]$. So, if $\mu_{\theta} \in L^2[0, \pi]$, then

$$\mu_{\theta}(\varphi) = \sum_{\nu=0}^{\infty} c_{\nu}(\theta) \cos \nu \varphi \quad \text{(a.e.)}.$$

We shall look for μ_{θ} of the form

$$\mu_{\theta}(\varphi) := \sum_{\nu=0}^{n} c_{\nu}(\theta) \cos \nu \varphi \quad \text{(a.e.)}.$$

Relations (10) uniquely determine μ_{θ} as

$$\mu_{\theta}(\varphi) = \frac{1}{\pi} \left\{ \frac{\sin n\theta}{\sin \theta} + 2 \sum_{\nu=1}^{n-1} \frac{\sin(n-\nu)\theta}{\sin \theta} \cos \nu\varphi \right\}.$$

Clearly, we may think of μ_{θ} as a θ -perturbation of the classical Fejér's kernel.

The basic interpolation polynomials (9) are uniquely determined. Simple computations show that

$$\tau_0(\varphi) = \frac{\sin n\varphi \cos \varphi/2}{2n\sin \varphi/2}, \quad \tau_n(\varphi) = \frac{(-1)^{n+1} \sin n\varphi \sin \varphi/2}{2n\cos \varphi/2}$$
(12)

and

$$\tau_j(\varphi) = \frac{(-1)^J \sin n\varphi \sin \varphi}{2n \sin\left(\frac{\varphi}{2} + \frac{j\pi}{2n}\right) \sin\left(\frac{\varphi}{2} - \frac{j\pi}{2n}\right)}, \quad 1 \le j \le n-1.$$
(13)

Our next task is to compute the coefficients $\alpha_i(\theta)$. We claim

$$\alpha_0 = \frac{1}{2n} \frac{1 - \cos n\theta}{1 - \cos \theta}, \quad \alpha_n = \frac{(-1)^{n-1}}{2n} \frac{1 - (-1)^n \cos n\theta}{1 + \cos \theta}$$
(14)

and for $1 \leq j \leq n - 1$,

$$\alpha_j = \frac{(-1)^j - \cos n\theta}{n\left(\cos\frac{j\pi}{n} - \cos\theta\right)}.$$
(15)

Indeed, when $1 \leq j \leq n - 1$

$$\alpha_j = \int_0^\pi \tau_j(\varphi) \,\mu_\theta(\varphi) \,d\varphi = \frac{1}{2} \,\int_{-\pi}^\pi \frac{(-1)^j}{n} \,\frac{\sin\varphi\,\sin n\varphi}{\cos\frac{j\pi}{n} - \cos\varphi} \mu_\theta(\varphi) \,d\varphi.$$

and observing that in the above integral the integrand is a trigonometric polynomial of degree 2n - 1, we apply Lemma 1 with m = 2n and $\gamma = 0$ in order to obtain

$$\alpha_j = \frac{(-1)^j}{2n\,\sin\,\theta} \left[4\sum_{s=1}^{n-1}\,\cos\left(\frac{sj\pi}{n}\right)\sin\,s\theta + 2\,(-1)^j\,\sin\,n\theta \right]$$

and (15) follows upon applications of elementary identities. Similarly, (12) may be used to obtain (14). We finally prove (11): let $P_n(z) := \frac{1-z^n}{1-z}$. By (14) and (15) with $z = e^{i\gamma_0}$

$$\begin{split} \sum_{j=0}^{n} |\alpha_{j}(\gamma_{0})| &= \frac{|P_{n}(z)|^{2}}{2n} + \sum_{j=1}^{n-1} \frac{|P_{n}\left(ze^{ij\pi/n}\right)| \left|P_{n}\left(ze^{-ij\pi/n}\right)\right|}{n} + \frac{|P_{n}(-z)|^{2}}{2n} \\ &\leqslant \frac{|P_{n}(z)|^{2}}{2n} + \sum_{j=1}^{n-1} \frac{|P_{n}\left(ze^{ij\pi/n}\right)|^{2} + |P_{n}\left(ze^{-ij\pi/n}\right)|^{2}}{2n} + \frac{|P_{n}(-z)|^{2}}{2n} \\ &= \frac{1}{2n} \sum_{j=0}^{2n-1} |P_{n}(\mu_{j}z)|^{2}, \end{split}$$

where $\{\mu_j\}_{j=0}^{2n-1}$ is the set of distinct 2*n*-roots of unity. Another application of Lemma 1 with m = 2n and $\gamma = \gamma_0$ yields

$$\frac{1}{2n} \sum_{j=0}^{2n-1} |P_n(\mu_j z)|^2 = \frac{1}{\pi} \int_{-\pi}^{\pi} \frac{1 - \cos(n\,\theta)}{1 - \cos(\theta)} \, d\theta = n$$

and (11) follows. This completes the proof of (6).

89

Theorem 1 is an immediate consequence of (6) and (7). Theorem 2, with $\theta = 0$, follows by letting $\theta \to 0$ in (6) and (7) upon noticing that

 $\alpha_i(0) \neq 0$

only when $j \in J_n$. The general case of Theorem 2 follows by considering $p_{\theta}(z) := p(e^{i\theta}z)$ for given $p \in \mathcal{P}_n$.

References

- B.D. Bojanov, Markov-type inequalities for polynomials and splines, in: Ch. Chui, L. Schumaker, J. Stöckler (Eds.), Approximation Theory, vol. X (St. Louis, MO, 2001), Innovations in Applied Mathematics, Vanderbilt University Press, Nashville, TN, 2002, 31–90.
- [2] D.P. Dryanov, Quadrature formulae with free nodes for periodic functions, Numer. Math. 67 (1994) 441–464.
- [3] D.P. Dryanov, R. Fournier, Bernstein and Markov type inequalities, Preprint CRM–2929, Centre de Recherches Mathématiques, Université de Montréal, 2003.
- [4] R.J. Duffin, A.C. Schaeffer, A refinement of an inequality of the brothers Markoff, Trans. Amer. Math. Soc. 50 (1941) 517–528.
- [5] C. Frappier, Q.I. Rahman, St. Ruscheweyh, New inequalities for polynomials, Trans. Amer. Math. Soc. 288 (1985) 69–99.
- [6] I.P. Natanson, Constructive function theory, vol. 3, Frederic Ungar, New York, 1965.
- [7] Q.I. Rahman, G. Schmeisser, Analytic Theory of Polynomials, Oxford University Press, Oxford, 2002.